Stats 2 Estimation Questions

3	The time, T minutes, that parents have to wait before seeing a mathematics teacher at a school parents' evening can be modelled by a normal distribution with mean μ and standard deviation σ .					
	At a recent parents' evening, a random sample of 9 parents was asked to record the times that they waited before seeing a mathematics teacher.					
	The times, in minutes, are					
	5 12 10 8 7 6 9 7 8					
	(a) Construct a 90% confidence interval for μ . (7 marks)					
	(b) Comment on the headteacher's claim that the mean time that parents have to wait before seeing a mathematics teacher is 5 minutes. (2 marks)					
2	The weights of lions kept in captivity at Wildcat Safari Park are normally distributed.					
The weights, in kilograms, of a random sample of five lions were recorded as						
	46 48 57 49 54					
	(a) Construct a 95% confidence interval for the mean weight of lions kept in captivity at Wildcat Safari Park. (6 marks)					
	(b) State the probability that this confidence interval does not contain the mean weight o lions kept in captivity at Wildcat Safari Park. (1 ma					
1	Alan's journey time, in minutes, to travel home from work each day is known to be normal distributed with mean μ .					
	Alan records his journey time, in minutes, on a random sample of 8 days as being					
	36 38 39 40 50 35 36 42					
	Construct a 95% confidence interval for μ . (5 marks)					

5 Members of a residents' association are concerned about the speeds of cars travelling through their village. They decide to record the speed, in mph, of each of a random sample of 10 cars travelling through their village, with the following results:

33 27 34 30 48 35 34 33 43 39

(a) Construct a 99% confidence interval for μ , the mean speed of cars travelling through the village, stating any assumption that you make. (7 marks)

(b) Comment on the claim that a 30 mph speed limit is being adhered to by most motorists.

Stats 2 Estimation Answers

3(a)	$\overline{x} = 8.0$	B1		
	S = 2.121	B1		
	v = 8 $t = 1.860$	B1 B1√		(on their <i>v</i>)
	90% confidence interval for μ			
	$=8\pm1.860\left(\frac{2.121}{3}\right)$	M1		
	$=8\pm1.315$	A1ft		
	= (6.68, 9.32)	A1	7	(6.68 to 6.69, 9.31 to 9.32)
(b)	The Headteacher's claim seems to be slightly optimistic	E1ft		Headteacher's claim isn't supported by the evidence and
	because value of 5 outside the confidence interval	E1ft	2	It appears that the mean time to see a mathematics teacher is greater than 5 minutes
	Total		9	

2(a)	$\overline{x} = \frac{254}{5} = 50.8$	B1		
	s = 4.55	B1		
	v = 5 - 1 = 4 $t_{\text{crit}} = 2.776$	B1 B1		
	95% confidence interval			
	$=50.8 \pm 2.776 \times \frac{4.55}{\sqrt{5}}$	M1√		ft their values
	$=50.8 \pm 5.648$			
	=(45.2,56.4)	A1	6	
(b)	0.05	B1	1	
	Total		7	

1	$\overline{x} = 39.5$ $s = 4.84$ $(s^2 = 23.4)$	4)	B1B1		$\sigma = 4.53 \left(\sigma^2 = 20.5\right)$
	$t_{\rm crit} = 2.365$		B1		
	95% CI for μ				
	$= \overline{x} \pm t_{\text{crit}} \times \frac{s}{\sqrt{n}}$				
	$=39.5 \pm 2.365 \times \frac{4.84}{\sqrt{8}}$		M1		$39.5 \pm 2.365 \times \frac{4.53}{\sqrt{7}}$
	$=39.5\pm4.05$				
	=(35.5,43.5)		A1√	5	
		Total		5	

5(a)	Assumption that the speeds of the cars			
	passing through the village are normally distributed	B1		
	$\overline{x} = 35.6$	В1 В1		
	$s^2 = 38.27$ ($s = 6.186$)	B1		$(\sigma^2 = 34.44 (\sigma = 5.869))$
	, ,			
	99% Confidence Interval for μ			
	$=35.6\pm3.250\times\frac{6.186}{\sqrt{10}}$	B1		or use of $\frac{\sqrt{34.44}}{3}$
	$=35.6\pm6.36$	M1		
	(A1√		on their mean and standard deviation
	=(29.2,42.0)	A1	7	CAO (29.24, 41.96)
(b)	Confidence interval includes 30 mph	B1√		
	80% of sample exceed 30 mph limit	B1		
	Speed limit not adhered to	B1	3	dependent on previous B1
	Total		10	